Answer:
The toxicant absorbtion can be reduced after exposure to the skin the surrounding clothing shoes or gloves should be removed or torn off than the part of the body which was exposured to the toxicant should be immediatly washed using clean running water for a while, with cold shower being the most recommended splashing method. In case of absorption for orally consumed chemicals should check on any remaining toxicant residue and be removed from the mouth. Vomiting should be induced to patients that are still conscious by providing them with liquids that can provoke vomiting. This will help in removing the toxicant in the intestinal and reduce their effect. Gastric lavage should then be done to induce diarrhea.
Explanation:
KOH is a strong base and HBr is a strong acid and completely dissociates.
The balanced equation for the reaction is;
KOH + HBr ---> KBr + H₂O
Stoichiometry of acid to base is 1:1
The number of KOH moles reacted - 0.50 M / 1000 mL/L x 48.0 mL = 0.024 mol
number of HBr moles reacted - 0.25 M/ 1000 mL/L x 96.0 mL = 0.024 mol
the number of H⁺ ions are equal to number of OH⁻ ions.
Then the solution is neutral.
pH of neutral solutions at 25 °C is 7.
Therefore pH is 7
Answer:
Colors of transition metal compounds are due to two types of electronic transitions. Due to the presence of unpaired d electrons, transition metals can form paramagnetic compounds. Transition metals are conductors of electricity, possess high density and high melting and boiling points.
Explanation:
<span>Mg + O2 > MgO. In reactant side, 2 O atoms and 1 Mg are present. In product side, 1 Mg and O atoms are present. Put 2 in product side to balance O atoms and 2 at Mg in reactant side to balance Mg atoms. Therefore the balanced equation becomes, 2Mg + O2 ----> 2MgO. Hope it helps.</span>
Answer:
Diasteriomers
Stereoisomers
Stereoisomers
Meso compounds
Constitutional isomers
Enantiomers
Enantiomers
Explanation:
Isomers are compounds that posses the same molecular formula but different structural formulas.
Constitutional isomers differ only in atom to atom connectivity while stereoisomers differ in arrangement of atoms in space. Stereo isomers differ in physical and chemical properties of the compounds.
When stereo isomers are non-superimpossible mirror images of each other, they are called enantiomers. Enantiomers have the same chemical and physical properties and differ only in their reaction with chiral substances.
Achiral compounds are compounds that do not exhibit chirality. Some achiral compounds contain stereogenic centers and are called meso compounds.