1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
11

Name 2 ways that sound waves and electromagnetic waves are different. Describe specifically.

Physics
1 answer:
Vlad1618 [11]3 years ago
6 0

Answer:Sound waves are longitudinal waves that is, are transmitted in the same direction of oscillation of the particles in the medium. Electromagnetic waves are transverse ie, the electric and magnetic fields, which are perpendicular to each other, oscillate perpendicularly to the direction of wave propagation.

Explanation:

You might be interested in
A CD has to rotate under the readout-laser with a constant linear velocity of 1.25 m/s. If the laser is at a position 3.7 cm fro
Savatey [412]

Answer:N=322.53 rpm

Explanation:

Given

Linear velocity (v)=1.25 m/s

Position from center is 3.7 cm

we know

v=\omega \times r

1.25\times 100=\omega \times 3.7

\omega =\frac{125}{3.7}=33.78

and \frac{2\pi N}{60}=\omega

N=\frac{\omega \times 60}{2\pi }

N=\frac{33.78\times 60}{2\pi }

N=322.53 rpm

8 0
3 years ago
If a ball is thrown straight up into the air with an initial velocity of 65 ft/s, its height in feet after t seconds is given by
fgiga [73]

Answer:

a) v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s

v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s

v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s

v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s

b) v=65-32(2)=1ft/s

Explanation:

From the exercise we got the ball's equation of position:

y=65t-16t^{2}

a) To find the average velocity at the given time we need to use the following formula:

v=\frac{y_{2}-y_{1}  }{t_{2}-t_{1}  }

Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001

y_{t=2}=65(2)-16(2)^{2} =66ft

y_{t=2.5}=65(2.5)-16(2.5)^{2} =62.5ft

v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s

--

y_{t=2.1}=65(2.1)-16(2.1)^{2} =65.94ft

v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s

--

y_{t=2.01}=65(2.01)-16(2.01)^{2} =66.0084ft

v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s

--

y_{t=2.001}=65(2.001)-16(2.001)^{2} =66.001ft

v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s

b) To find the instantaneous velocity we need to derivate the equation

v=\frac{df}{dt}=65-32t

v=65-32(2)=1ft/s

7 0
3 years ago
1. Aunt Minnie gives you $10 per second for 4 seconds. How much money do you have after 4 se
9966 [12]

Answer:

$40

Explanation:

10 × 4 = 40

or

10 + 10 + 10 + 10 = 40

4 0
3 years ago
Read 2 more answers
6
Arturiano [62]

Explanation:

A light bulb changes electrical energy into <em>heat energy and light energy .</em>

4 0
3 years ago
3. How do you represent the strength of a<br> force in a free-body diagram?
ivann1987 [24]
Generally, the length of the line will indicate how strong the force is. If you have two opposing forces and one is higher than the other, you would draw the line of the higher force visibly longer.
3 0
3 years ago
Other questions:
  • How much is one degree Celsius in temperature change ?
    9·1 answer
  • A Review | Constants Periodic Table
    10·1 answer
  • If the distance between two masses is tripled, the gravitational force between changes by a factor of:_______
    12·1 answer
  • A dog travels 18 meters south across the backyard in 11 seconds. What is the dog's speed?
    15·1 answer
  • What would be an example of higher concentration for a liquid?
    14·2 answers
  • What travels by vibrating particles? Mechincal Waves or ElecrtoMagnetic Waves.
    8·1 answer
  • 4. A weightlifter raises a mass mat a constant speed to a height h in time t. Which of the following
    10·1 answer
  • Please help me I give good points
    15·1 answer
  • A hunter who is standing 220.0-m away fires his rifle. How long (in seconds) will it take the sound to travel to your ear.
    13·1 answer
  • How do kinetic and potential energy transfer to one throughout a roller coaster ride?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!