Answer:
I₂ = 2.13 x 10⁻⁸ W/m²
Explanation:
given,
increase in sound level = 28.1 dB
frequency of the sound = 250 Hz
intensity = 3.3 x 10⁻¹¹ W/m²
Intensity delivered = ?
the difference of intensity level is give as






I₂ = 645.65 I₁
I₂ = 645.65 x 3.3 x 10⁻¹¹
I₂ = 2.13 x 10⁻⁸ W/m²
Answer:
Frequency is <u>the number of waves</u> that move past a point during a specific amount of time. Frequency is measured in <u>Hertz</u>, and is classified as high, medium, or low. Frequency is interpreted as the <u>pitch</u> of a sound. Intensity refers to the <u>loudness</u> of a sound and is measured in <u>decibels</u>. Louder sounds <u>increase</u> the rate of nerve signals relayed to the brain.
Explanation:
The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4
Answer:
C. The number of positive and negative charges can be the same.
Explanation:
That’s really easy ask your teacher and also peace happy