First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min
Answer:
0.071L
Explanation:
From the question given, we obtained the following data:
Molarity of HCl = 2.25 M
Mass of HCl = 5.80g
Molar Mass of HCl = 36.45g/mol
Number of mole of HCl =?
Number of mole = Mass /Molar Mass
Number of mole of HCl = 5.8/36.45 = 0.159mole
Now, we can obtain the volume required as follows:
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.159mole/ 2.25
Volume = 0.071L
B,speedof light>speed of sound
Answer:
C)We cannot be sure unless we find out its boiling point.
Explanation:
I will like to clearly state that simply comparing two compounds will not tell us exactly which one will be a liquid, solid or gas at room temperature.
If I want to determine whether an unknown substance will be a liquid at room temperature, I will have to measure its boiling point. If the boiling point is above room temperature, and the melting point is below room temperature, it’s a liquid. If the boiling point of the unknown substance is below room temperature, it is a gas.
This confirms that we cannot conclude on the state of matter in which a compound exists unless we know something about its boiling point, not by inspecting the properties of neighbouring compounds in the same homologous series