Answer:
V₂ = 1.92 L
Explanation:
Given data:
Initial volume = 0.500 L
Initial pressure =2911 mmHg (2911/760 = 3.83 atm)
Initial temperature = 0 °C (0 +273 = 273 K)
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 3.83 atm × 0.500 L × 273 K / 273 K × 1 atm
V₂ = 522.795 atm .L. K / 273 K.atm
V₂ = 1.92 L
The answer would be, "Today is cloudy, but tomorrow will be clear and sunny." The rest are examples of climate change, which is spanned over 30+ years, weather is on a day-to-day basis
Answer: The system will try and offset the change.
Explanation: Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in a direction to minimize the effect.
Thus if temperature is increased, the reaction will shift in a direction where temperature is decreasing and vice versa. Similarly if pressure is increased, the reaction will shift in a direction where pressure is decreasing and vice versa.