Answer:
208.7°C was the initial temperature of the limestone.
Explanation:
Heat lost by limestone will be equal to heat gained by the water

Mass of limestone = 
Specific heat capacity of limestone = 
Initial temperature of the limestone = 
Final temperature =
=T = 51.9°C

Mass of water= 
Specific heat capacity of water= 
Initial temperature of the water = 
Final temperature of water =
=T = 51.9°C



On substituting all values:


208.7°C was the initial temperature of the limestone.
The answer is B its anothey fancy word for lithospher
The Vacuole stores water,food,and waste
Answer:
Explanation:
1)<u><em> Ionization equilibrium equation: given</em></u>
- H₂O(l) + H₂O(l) ⇌ H₃O⁺(aq) + OH⁻(aq)
2) <em><u>Ionization equilibrium constant, at 25°C, Kw: given</u></em>
<u>3) Stoichiometric mole ratio:</u>
As from the ionization equilibrium equation, as from the fact it is stated, the concentration of both ions, at 25°C, are equal:
- [H₃O⁺(aq)] = [OH⁻(aq)] = 1.0 × 10⁻⁷ M
- ⇒ Kw = [H3O⁺] [OH⁻] = 1.0 × 10⁻⁷ × 1.0 × 10⁻⁷ = 1.0 × 10⁻¹⁴ M
<u><em>4) A solution has a [OH⁻] = 3.4 × 10⁻⁵ M at 25 °C </em></u><em><u>and you need to calculate what the [H₃O⁺(aq)] is.</u></em>
Since the temperature is 25°, yet the value of Kw is the same, andy you can use these conditions:
Then you can substitute the known values and solve for the unknown:
- 1.0 × 10⁻¹⁴ M² = [H₃O⁺] × 3.4 × 10⁻⁵ M
- ⇒ [H₃O⁺] = 1.0 × 10⁻¹⁴ M² / ( 3.4 × 10⁻⁵ M ) = 2.9⁻¹⁰ M
As you see, the increase in the molar concentration of the ion [OH⁻] has caused the decrease in the molar concentration of the ion [H₃O⁺], to keep the equilibrium law valid.
Answer:
The new acceleration becomes twice the pervious acceleration.
Explanation:
Given that,
Mass of the rock, m = 3 kg
Force, F = 1 N
We know that the force acting on an object is given by :
F = ma
a is acceleration of the rock
Put m = 3 kg and F = 1N,

If the force is doubled, F' = 2 N
So,
F'=ma'

So, the new acceleration becomes twice the initial acceleration.