Answer:
The value is 
Explanation:
From the question we are told that
The mass of each sphere is 
The length of the string is
The angle of with the vertical is 
The acceleration due to gravity is 
Generally the force acting between the forces is mathematically represented as

=> 
Generally from Pythagoras theorem the radius of the circular curve created by the force is

=> 
=>
=> 
=> 
=> 
Resistance reduces the current. If there is more resistance, there is less current.
Answer:
660 centimeters
Explanation:
There are 100 cm in 1 m. To convert from m to cm, multiply by 100.

There are 660 cm in 1 m.