<em>Paper chromatography is especially useful in characterizing amino acids. The different amino acids move at differing rates on the paper because of differences in their R groups.</em>
When carbon undergoes sp2 hybridization it forms methane ? I believe.
Answer:
HgSO₄
Explanation:
% => g => moles => ratio => reduce => empirical ratio
%Hg = 67.6% => 67.6g/201g/mol = 0.34mol
%S = 10.8% => 10.8g/32g/mol = 0.34mol
%O = 21.6% => 21.6g/16g/mol = 1.35mol
Hg:S:O => 0.34:0.34:1.35
Reduce to whole number ratio by dividing by the smaller mole value...
Hg:S:O => 0.34/.34:0.34/.34:1.35/.34 => Empirical Ratio = 1:1:4
∴ Empirical Formula is HgSO₄
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
Note: This question is incomplete and lacks very important data to solve this question. But I have found the similar question which shows the profiles about which question discusses. Using the data from that question, I have solved the question.
a) We need to find the major species from A to F.
Major Species at A:
1. 
Major Species at B:
1. 
2. 
Major Species at C:
1. 
Major Species at D:
1. 
2. 
Major Species at E:
1. 
Major Species at F:
1. 
b) pH calculation:
At Halfway point B:
pH = pK
+ log[
]/[H
]
pH = pK
= 6.35
Similarly, at halfway point D.
At point D,
pH = pK
+ log [H
]/[H2
]
pH = pK
= 10.33
Answer:
See below
Step-by-step explanation:
- Hydrogen either reacts with or is formed by reactions with many other elements, so chemists could use it directly to determine their relative masses.
- Hydrogen has the smallest atomic mass, so it was convenient to give H a relative atomic mass of 1 and assign those of other elements as multiples of this number.
The O = 16 scale became the standard in 1903 and carbon-12 was chosen in 1961.