Answer:
40.73 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 121.59 kPa/101.325 = 1.2 atm).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 2.0 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K),
T is the temperature of the gas in K (T = 25°C + 273 = 298 K).
<em>∴ V = nRT/P</em> = (2.0 mol)(0.082 L.atm/mol.K)(298 K)/(1.2 atm) = <em>40.73 L.</em>
Answer: GROUP 2 is the only group to include only metals. Group one includes the most metalic metals but hydrogen is usually put into group one and obviously hydrogen is not a metal. Group 2 includes Br, Mg, Ca, Sr, Ba,Ra.
Explanation:
Explanation:
the coefficient of hydrogen is 3
Answer : The structure of
will be square-planar.
Explanation :
In the given molecule
, 'Xe' is the central atom and 'H' is the terminal atom.
Xenon has 8 valence electrons and hydrogen has 1 valence electron. Therefore, the total number of valence electrons are 8 + 4(1) = 12 electrons.
The number of electrons used in Xe-H bonding = 8 electrons
The remaining electrons which are used as lone pair on central atom (Xe) = 12 - 8 = 4 electrons
There are 4 bonding pairs and 2 lone pairs of electrons, they will be arranged in the octahedral arrangement around the central atom with 2 lone pairs of electrons on central atom. The lone pairs are arranged linearly across the central atom. The resulting structure will be square-planar.
The structure of
is shown below.
None. Both chlorines and both hydrogens are single-bonded to the central carbon atom; the molecule is comprised of four single bonds and no double bonds.
Hope this helps!