Use the ideal gas equation PV=nRT. You can compare before and after using P1V1/n1T1=P2V2/n2T2. Since the number of moles remains constant you can disregard moles from the equation and use pressure, volume and temp. Make sure your pressure is converted to atmospheres, your volume is in liters, and your temperature is in kelvins.
Answer:
a rapidly flowing river discharges into the ocean where tidal currents are weak.
Explanation:
The force of the river pushing fresh water out to sea rather than tidal currents transporting seawater upstream determines the water circulation in these estuaries.
Answer:
Therefore, The indicator that is best fit for the given titration is Bromocresol Green Color change from pH between 4.0 to 5.6
Bromocresol green, color change from pH = 4.0 to 5.6
Explanation:
The equation for the reaction is :

concentration of
= 10%
10 g of
in 100 ml solution
molar mass = 45.08 g/mol
number of moles = 10 / 45.08
= 0.222 mol
Molarity of 
= 2.22 M
number of moles of
in 20 mL can be determined as:

Concentration of 
= 2.22 M
Similarly, The pKa Value of
is given as 10.75
pKb value will be: 14 - pKa
= 14 - 10.75
= 3.25
the pH value at equivalence point is,
![pH= \frac{1}{2}pKa - \frac{1}{2}pKb-\frac{1}{2}log[C]](https://tex.z-dn.net/?f=pH%3D%20%5Cfrac%7B1%7D%7B2%7DpKa%20-%20%5Cfrac%7B1%7D%7B2%7DpKb-%5Cfrac%7B1%7D%7B2%7Dlog%5BC%5D)
![pH = \frac{14}{2}-\frac{3.25}{2}-\frac{1}{2}log [2.22]](https://tex.z-dn.net/?f=pH%20%3D%20%5Cfrac%7B14%7D%7B2%7D-%5Cfrac%7B3.25%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7Dlog%20%5B2.22%5D)

Therefore, The indicator that is best fit for the given titration is Bromocresol Green Color change from pH between 4.0 to 5.6
Did you ever get this answer