Answer:
0.0745 mole of hydrogen gas
Explanation:
Given parameters:
Number of H₂SO₄ = 0.0745 moles
Number of moles of Li = 1.5107 moles
Unknown:
Number of moles of H₂ produced = ?
Solution:
To solve this problem, we have to work from the known specie to the unknown one.
The known specie in this expression is the sulfuric acid, H₂SO₄. We can compare its number of moles with that of the unknown using a balanced chemical equation.
Balanced chemical equation:
2Li + H₂SO₄ → Li₂SO₄ + H₂
From the balanced equation;
Before proceeding, we need to obtain the limiting reagent. This is the reagent whose given proportion is in short supply. It determines the extent of the reaction.
2 mole of Li reacted with 1 mole of H₂SO₄
1.5107 mole of lithium will react with
= 0.7554mole of H₂SO₄
But we were given 0.0745 moles,
This suggests that the limiting reagent is the sulfuric acid because it is in short supply;
since 1 mole of sulfuric acid produced 1 mole of hydrogen gas;
0.0745 mole of sulfuric acid will produce 0.0745 mole of hydrogen gas
They're metals and they are in the same group/family
The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
Boyle's law says, PV=RT
- Here P represents the pressure, V represents the volume and T represents the temperature. R is a constant. The volume of an ideal gas is inversely proportional to its pressure if the temperature is constant.
- When a bubble is present in deep water it has water pressure and atmospheric pressure. Then the Volume increases when water pressure raises which is proportional to the depth reduces.
- But we should not finalize the volume of the bubble will be four-time as great as at the top than the bottom. if the bottom of the lake is at four atmospheres, the temperature will not be equal to the top.
- If the bubble travels from the bottom to the top or vice-versa, it's going to lose or gain heat in a way that must be quite hard to measure.