You want to draw a free body diagram of the forces on the sled in the horizontal x-direction.
If you visualize the system in an x-y coordinate plane, the force along the x-direction is the angle it makes with the x-axis multiples by the force.
The angle made with the x-axis is cosine of the angle theta.
Please see picture attached.
Well, if a charger conductor is touched to another object or close enough to touching the object then the conductor can transfer its charge to that object. Conductors allow for electrons to be transported from particle to particle, so a charged object will always distribute its charge until the repulsive forces are minimized.
Answer:
Cruising at 35,000 feet in an airliner, straight toward the east,
at 500 miles per hour
Explanation:
Please ignore my comment -- mass is not needed, here is how to solve it. pls do the math
at bottom box has only kinetic energy
ke = (1/2)mv^2
v = initial velocity
moving up until rest work done = Fs
F = kinetic fiction force = uN = umg x cos(a)
s = distance travel = h/sin(a)
h = height at top
a = slope angle
u = kinetic fiction
work = Fs = umgh x cot(a)
ke = work (use all ke to do work)
(1/2)mv^2 = umgh x cot(a)
u = (1/2)v^2 x tan (a) / gh