Work = force x distance. In units, Joules = Newtons x meters.
So: Work = 50 Newtons x 3 meters
Work = 150 joules. Answer D is correct
FYI - to ace physics, you should learn to identify these values using their fundamental units:
Force = Newtons = Kg·m/s²
Work = joules = kg·m²/s²
Power = watts = kg·m²/s³
In high school physics, If you learn to arrange equations so the units work out properly for the answer, you'll get most problems correct.
Answer:
<em>The second ball has four times as much kinetic energy as the first ball.</em>
Explanation:
<u>Kinetic Energy
</u>
Is the type of energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:

Where:
m = mass of the object
v = speed at which the object moves
The kinetic energy is expressed in Joules (J)
Two tennis balls have the same mass m and are served at speeds v1=30 m/s and v2=60 m/s.
The kinetic energy of the first ball is:



The kinetic energy of the second ball is:



Being m the same for both balls, the second ball has more kinetic energy than the first ball.
To find out how much, we find the ratio:

Simplifying:

The second ball has four times as much kinetic energy as the first ball.
Answer:
a) Frope= 71.7 N
b) Frope=6.7 N
Explanation:
In the figure the skier is simulated as an object, "a box".
a) At constant velocity we can say that the object is in equilibrium, so we apply the Newton's first law:
∑F=0
Frope=w*sen6.8°
Frope=71.71N
Take into account that w is the weight that is calculated as mass per gravitiy constant:
w=m*g


b) In this case the system has an acceleration of 0.109m/s2. Then, we apply Newton's second law of motion:
F=m*a
F=61.8Kg*0.109m/s2
Frope=6.73N
Density depends on mass and volume so option D is correct answer. Hope this helps!