C)shorter wavelength and higher energy
frequency is inversely proportional to wavelength
frequency is directly proportional to Energy
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
when heat gained = heat lost
when AL is lost heat and water gain heat
∴ (M*C*ΔT)AL = (M*C*ΔT) water
when M(Al) is the mass of Al= 225g
C(Al) is the specific heat of Al = 0.9
ΔT(Al) = (125.5 - Tf)
and Mw is mass of water = 500g
Cw is the specific heat of water = 4.81
ΔT = (Tf - 22.5)
so by substitution:
∴225* 0.9 * ( 125.5 - Tf) = 500 * 4.81 * (Tf-22.5)
∴Tf = 30.5 °C
None since CO3 does not exist.
Since the direction of particle displacement in electromagnetic waves is also perpendicular to the direction of motion, generating the waveform of visible light and other forms of electromagnetic radiation, they are also transverse waves.
In a transverse wave, the displacement is perpendicular to the direction of motion (at an angle of 90 degrees Celsius). The direction of displacement (up and down) in the case of the ocean wave is perpendicular to the direction of wave motion (horizontally along the water), making it a transverse wave.
How far a particle has moved from its original starting position, or, in the case of an ocean wave, how high or low the water is, is measured by its displacement or amplitude.
learn more about displacement here;
brainly.com/question/321442
#SPJ4