1 kpa = 0.0098692327 atm so just multiply that by 45.6
Answer:
300 mL
Explanation:
the unit formula of calcium phosphate is Ca3(PO4)2
molar mass of Ca3(PO4)2 = (3×40 + 2×31 + 8×16) g/mol = 310 g/mol
n = m/M = 35 g/(310 g/mol)
c = n/V
V = n/c = [35 g/(310 g/mol)]/0.375 mol/L
V = 0.30 L = 300 mL
Temperature means, in this context, movement.
Condensation can be explained by the reduction of temperature of the system. This effect make possible the cohesion forces increases. In other words, the result is coalescence by attractive forces.
Answer:
3,964 years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of the element is 5,730 years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(5,730 years) = 1.21 x 10⁻⁴ year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
where, k is the rate constant of the reaction (k = 1.21 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of the sample ([A₀] = 100%).
[A] is the remaining concentration of the sample ([A] = 61.9%).
∴ t = (1/k) ln([A₀]/[A]) = (1/1.21 x 10⁻⁴ year⁻¹) ln(100%/61.9%) = 3,964 years.
I think it might be Nitrogen dioxide, but please check behind