Explanation:
Surface tension is the energy required to increase the surface area of a liquid by a given amount. The stronger the intermolecular interactions, the greater the surface tension. ... The viscosity of a liquid is its resistance to flow. Liquids that have strong intermolecular forces tend to have high viscosities.
The surface tension in plain water is just too strong for bubbles to last for any length of time. ... This separates the water molecules from each other. Since the surface tension forces become smaller as the distance between water molecules increases, the intervening soap molecules decrease the surface tension.
Answer:
<h3>5.06282 × 10²⁴ molecules</h3>
Explanation:
The number of molecules of Ca2(SO3) can be found by using the formula
<h3>N = n × L</h3>
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 8.41 × 6.02 × 10²³
We have the final answer as
<h3>5.06282 × 10²⁴ molecules</h3>
Hope this helps you
Answer:
11·699
Explanation:
Given the concentration of hydroxide ion in the solution is 5 ×
M
Assuming the temperature at which it is asked to find the pH of the solution be 298 K
<h3>At 298 K the dissociation constant of water is

</h3><h3>∴ pH + pOH = 14 at 298 K</h3><h3>pOH of the solution = -log( concentration of hydroxide ion )</h3>
∴ pOH of the given solution = - log(5 ×
= -0·699 + 3 = 2·301
pH of the given solution = 14 - 2·301 = 11·699
∴ pH of the solution = 11·699
A. Silver
Proton- 47
Electrons- 47
Neutron- 61
108-47=61