Answer:
The velocity is 40 ft/sec.
Explanation:
Given that,
Force = 3200 lb
Angle = 30°
Speed = 64 ft/s
The resistive force with magnitude proportional to the square of the speed,

Where, k = 1 lb s²/ft²
We need to calculate the velocity
Using balance equation

Put the value into the formula

Put the value of k


At terminal velocity 
So, 


Hence, The velocity is 40 ft/sec.
The answer to this question is dropping it on a hard surface.
The inflated balloon shrinks when it is placed in an ice bath with no change in atmospheric pressure.
<u>Explanation:</u>
When the inflated balloon is subjected to an ice bath, it shrinks. This is due to the fact that smaller volume gets occupied by the air/gas inside the balloon as the temperature decreases. Hence, causes the balloon walls to collapse.
An ice bath also lowers the overall air temperature of the balloon inside. As the temperature decreases, the air molecules move more slowly and with lower energy. Because of the particle's lower energy, their collisions with the walls are not enough to keep the inflated balloon.
Answer:
K.E₂ = mg(h - 2R)
Explanation:
The diagram of the car at the top of the loop is given below. Considering the initial position of the car and the final position as the top of the loop. We apply law of conservation of energy:
K.E₁ + P.E₁ = K.E₂ + P.E₂
where,
K.E₁ = Initial Kinetic Energy = (1/2)mv² = (1/2)m(0 m/s)² = 0 (car initially at rest)
P.E₁ = Initial Potential Energy = mgh
K.E₂ = Final Kinetic Energy at the top of the loop = ?
P.E₂ = Final Potential Energy = mg(2R) (since, the height at top of loop is 2R)
Therefore,
0 + mgh = K.E₂ + mg(2R)
<u>K.E₂ = mg(h - 2R)</u>
A contact force since you are making physical contact with the dog
Mark my brainliest please