Answer:
measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen,
Explanation:
The expression for the diffraction phenomenon is
a sin θ = m λ
for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles
tan θ = y / L
in these experiments the angles are small
tan θ = sin θ / cos θ = sin θ
sunt θ = y / L
we substitute
a
= m λ
y = m L λ / a
therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.
Answer:
Explanation:
Givens
d = 8.5 meters
vi = 0
a = 9.81
t = ?
Formula
d = vi * t + 1/2 a t^2
Solution
8.5 = 0 + 1/2 9.81 * t^2 multiply both sides by 2
8.5 = 4.095 t^2 Divide both sides by 4.095
8.5/4.095 = t^2
1.7329 = t^2 Take the square root of both sides
t = 1.316
It takes 1.316 seconds to hit the ground.
As the skydiver accelerates she gains momentum, and the air she passes through creates a resistance that pushes back up at her, increasing drag. Eventually, the force of the resisting air balances out with the force of gravity, and the skydiver stops speeding up
Answer:
The cloud moves 9050 meters to the east in 12.5 minutes.
Explanation:
Let suppose that mass of the cloud is negligible. meaning that effects of gravity are negligible and that altitude of the cloud remains constant. If the cloud drifts at constant velocity, travelled distance is defined by following formula:
(1)
Where:
- Velocity, in meters per second.
- Time, in seconds.
If we know that
and
, then the travelled distance after 12.5 minutes is:

The cloud moves 9050 meters to the east in 12.5 minutes.
The answer to the question is true