Making a drawing of the system, we will have two forces which are tension and the weight of the object. Balancing the forces present, we do as follows:
T = W
W = 30 N
Therefore, weight is equal to 30 N. Hope this answers the question. Have a nice day. Feel free to ask more questions.
A. The force that causes the water on the lettuce to come off the lettuce and go to the walls of the bowl is centrifugal force.
<h3>What is centrifugal force?</h3>
Centrifugal force is an inertial force that appears to act on all objects when viewed in a rotating frame of reference.
This force is directed away from the center around which the body is moving.
<h3>What is centripetal force?</h3>
This is force that acts on a body moving in a circular path and is directed towards the center around which the body is moving.
While centripetal force is directed towards to the center, the centrifugal force is directed away.
Thus, the force that causes the water on the lettuce to come off the lettuce and go to the walls of the bowl is centrifugal force.
Learn more about centrifugal force here: brainly.com/question/20905151
#SPJ1
Answer:
Explanation:
Deceleration of solid disk = g sin10/1 + k²/r² = g sin 10 / 1 + 1/2 = g sin 10 x 2/3
[ k is radius of gyration of disk which is equal to( 1/√2)x r ]
deceleration a = -1.1345 m/s²
v = u - at , t = u / a = 1.5 / 1.1345 = 1.322 s.
So mathematical harmonics are based around a divergent set of fractions. Sigma(1/n)
with the 1st harmonic being... well 1, or 1 full wavelength.The second harmonic is exactly 1/2 the wavelength of the 1st with the third being 1/3 the wavelength. As Wavelengths go down, frequencies go up in a perfect ratio.
Second Harmonic has double the Frequency of the 1st or base note. Third Harmonic is triple and so on.
So the Harmonic set of 375 is.
1. 375
2. 375×2=750
3. 375×3= 1125
.
.
.
etc (: I hope this helps.
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C