1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
3 years ago
7

A process consists of two steps: (1) One mole of air at T = 800 K and P = 4 bar is cooled at constant volume to T = 350 K. (2) T

he air is then heated at constant pressure until its temperature reaches 800 K. If this two-step process is replaced by a single isothermal expansion of the air from 800 K and 4 bar to some final pressure P, what is the value of P that makes the work of the two processes the same? Assume mechanical reversibility and treat air as an ideal gas with CP = (7/2)R and CV = (5/2)R.
Engineering
1 answer:
mihalych1998 [28]3 years ago
5 0

Answer:

2.279 bar

Explanation:

I will be using R = 8.314*10^{-2} \frac{l*bar}{K*mol} here.

Also, you should know that 1 l*bar = 0.1 kJ

Lastly, the definition of work for <em>any</em> thermodynamics process:

W=-\int P \, dV                                                           eq1        

So, getting started. We will first find the work for the first process

  • The first step, we have a constant volume process, therefore, there is no work done (W = 0) You can see it from this integral

-\int\limits^{V_2} _{V_1} {P} \, dV

There is no volume change, so no work can be done

  • In the second step We now have a constant pressure process. Don't worry, our eq1 still works here. Take in mind now that P is now a function of T. And since we are assuming that air is an ideal gas, we can use Ideal gas law PV = nRT here. So:

T = \frac{PV}{nR}

But there is no T in this integral!

W=-\int P \, dV

This is where we will do a little calculus trick.

In differential form:

dT=d\frac{PV}{R}

Note that P and R is constant So...

dT=\frac{P}{R}dV

Now we can substitute dV in the integral with dT

-\int\limits^{T_2} _{T_1} {\frac{PR}{P}} \, dT

And we get

W = -\int\limits^{T_2} _{T_1} {\frac{PR}{P}} \, dT

W = -3.741\ kJ

So, in total, the work <em>done</em><em> </em>by this process is 3.741 kJ. Make sure you do not confuse the sign of your answer. It is always good to state <em>prior</em> to your calculation which sign, + or - , will be assigned to work done <em>by </em>your system or work done <em>to</em> your system.

Now for the second process

  • We have an isothermal process, which means that T is constant during the process. So, similar to part 2 of the first process, by using ideal gas law:

P=\frac{RT}{V}

Which we will substitute into our ever reliable eq1

W=-\int\limits^{V_2} _{V_1} {\frac{RT}{V}} \, dV

Solving this integral, we get

W= -RT(ln(V_2)-ln(V_1))=-RTln(\frac{V_2}{V_1})                            eq2

Now, since we don't know V but we know P, We can simply use Ideal gas law(again)

V=\frac{RT}{P}

And substitute it in eq2, so:

W= -RTln(\frac{P_1}{P_2}=-RT(ln(P_1)-ln(P_2))

In kJ unit

W=-0.1*800*0.08314*(ln(4)-ln(P_2))

  • Finally, we find P_2 of process 2 that would make that work done by both process equal. So, we equate the work done by both process

W=-3.741 =-0.1*800*0.08314(ln(4)-ln(P_2))

Solve this equation for P_{2} and we get

P_{2}=2.279\ bar

You might be interested in
An induced-draft cooling tower cools 90,000 gallons per minute of water from 84 to 68oF. Air at 14.61 psia, 70oF dry bulb and 60
belka [17]

Answer:

a. V = 109.64 × 10⁵ ft/min

b. Mw = 654519.54 kg/hr

Explanation:

Given Parameters

mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s

inlet temperature of water, T1 = 84 F = 28.89 C

outlet temperature of water, T2 = 68 F = 20 C

specific heat capacity of water, c = 4.18kJ/kgK

rate of heat remover from water, Qw is given by

Qw = 6607.33[28.89 - 20] * 4.18

Qw = 245529.545kw

For air, inlet condition

DBT = 70 F              hi = 43.43 kJ/kg

WBT = 60 F             wi = 0.00874 kJ/kg

                                u1 = 0.8445 m/kg

oulet condition,

DBT = 70 F        RH = 100.1

h1 = 83.504kJ/kg

Wo = 0.222kJ/kg

check the attached file for complete solution

3 0
2 years ago
Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
Rashid [163]

The heat transferred to and the work produced by the steam during this process  is 13781.618 kJ/kg

<h3>​How to calcultae the heat?</h3>

The Net Change in Enthalpy will be:

= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg

Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)

= 1/2 x ( 75 + 225) x (5 - 2)

W = 450 KJ

From the First Law of Thermodynamics, Q = U + W

So, Heat Transfer = Change in Internal Energy + Work Done

= 13331.618 + 450

Q = 13781.618 kJ/kg

Learn more about heat on:

brainly.com/question/13439286

#SP1

6 0
1 year ago
What is the volicity of a rocket?
Marysya12 [62]

Answer:

7.9 kilometers per second

Explanation:

8 0
2 years ago
Read 2 more answers
A sinusoidal wave of frequency 420 Hz has a speed of 310 m/s. (a) How far apart are two points that differ in phase by π/8 rad?
Olin [163]

Answer:

a) Two points that differ in phase by π/8 rad are 0.0461 m apart.

b) The phase difference between two displacements at a certain point at times 1.6 ms apart is 4π/3.

Explanation:

f = 420 Hz, v = 310 m/s, λ = wavelength = ?

v = fλ

λ = v/f = 310/420 = 0.738 m

T = periodic time of the wave = 1/420 = 0.00238 s = 0.0024 s = 2.4 ms

a) Two points that differ in phase by π/8 rad

In terms of the wavelength of the wave, this is equivalent to [(π/8)/2π] fraction of a wavelength,

[(π/8)/2π] = 1/16 of a wavelength = (1/16) × 0.738 = 0.0461 m

b) two displacements at times 1.6 ms apart.

In terms of periodic time, 1.6ms is (1.6/2.4) fraction of the periodic time.

1.6/2.4 = 2/3.

This means those two points are 2/3 fraction of a periodic time away from each other.

1 complete wave = 2π rad

Points 2/3 fraction of a wave from each other will have a phase difference of 2/3 × 2π = 4π/3.

8 0
3 years ago
Problem 9.11 A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain f
BabaBlast [244]

Answer:

the critical flaw length is 10.06 mm

Explanation:

Given the data in the question;

plane strain fracture toughness K_{tc = 92 Mpa√m

yield strength σ_y = 900 Mpa

design stress is one-half of the yield strength ( 900 Mpa / 2 ) 450 Mpa

Y = 1.15

we know that;

Critical crack length a_c = 1/π( K_{tc / Yσ )²

we substitute

a_c = 1/π( 92 Mpa√m / (1.15 × 450 Mpa  )²

a_c = 1/π( 92 Mpa√m / (517.5 Mpa  )²

a_c = 1/π( 0.177777  )²

a_c = 1/π( 0.03160466 )

a_c = 0.01006 m = 10.06 mm

Therefore, the critical flaw length is 10.06 mm

{ a_c = ( 10.06 mm ) > 3 mm

The critical flow is subject to detection

5 0
3 years ago
Other questions:
  • g (d) Usually, in the case of two finite-duration signals like in parts (a) and (b), the convolution integralmust be evaluated i
    7·1 answer
  • Is air conditioner a refrigerator?
    10·1 answer
  • A Service Schedule is...
    8·2 answers
  • 2. The initially velocity of the box and truck is 60 mph. When the truck brakes such that the deceleration is constant it takes
    12·1 answer
  • A hot plate with a temperature of 60 C, 50 triangular profile needle wings of length (54 mm), diameter 10 mm (k = 204W / mK) wil
    6·1 answer
  • Two metallic terminals protrude from a device. The terminal on the left is the positive reference for a voltage called vx (the o
    9·2 answers
  • Drag each label to the correct location on the chart. Classify the organisms based on how they obtain food.
    14·2 answers
  • What is mechanical engineer​
    14·1 answer
  • What is the name of the type of rocker arm stud that does not require a valve adjustment?
    12·1 answer
  • Dampness or moisture introduces ____ into the weld, which causes cracking when some metals are welded.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!