Answer:
A box sits stationary on a ramp
Explanation:
Static friction is a force which keeps an object at rest as it is in the case of the box. It has to be overcome for the object to be set into motion.
Static force of friction is calculated as follows:
F= μη
F is static force of friction.
μ is the coefficient of static friction.
η is the normal force.
Basic solutions are hydroxides therefore the answer is A ca(OH)2
The minimum value of the coefficient of static friction between the block and the slope is 0.53.
<h3>Minimum coefficient of static friction</h3>
Apply Newton's second law of motion;
F - μFs = 0
μFs = F
where;
- μ is coefficient of static friction
- Fs is frictional force
- F is applied force
μ = F/Fs
μ = F/(mgcosθ)
μ = (250)/(50 x 9.8 x cos15)
μ = 0.53
Thus, the minimum value of the coefficient of static friction between the block and the slope is 0.53.
Learn more about coefficient of friction here: brainly.com/question/20241845
#SPJ1
Answer: D
Explanation: read the answers above and compare to your test
Answer:
xf = 5.68 × 10³ m
yf = 8.57 × 10³ m
Explanation:
given data
vi = 290 m/s
θ = 57.0°
t = 36.0 s
solution
firsa we get here origin (0,0) to where the shell is launched
xi = 0 yi = 0
xf = ? yf = ?
vxi = vicosθ vyi = visinθ
ax = 0 ay = −9.8 m/s
now we solve x motion: that is
xf = xi + vxi × t + 0.5 × ax × t² ............1
simplfy it we get
xf = 0 + vicosθ × t + 0
put here value and we get
xf = 0 + (290 m/s) cos(57) (36.0 s)
xf = 5.68 × 10³ m
and
now we solve for y motion: that is
yf = yi + vyi × t + 0.5 × ay × t
² ............2
put here value and we get
yf = 0 + (290 m/s) × sin(57) × (36.0 s) + 0.5 × (−9.8 m/s2) × (36.0 s) ²
yf = 8.57 × 10³ m