Abundant hydrogen high temperature high pressure is that they need
Answer:
30m/s
Explanation:
From law of motion equation
Vf= Vi + at
Where Vf= final velocity
Vi= initial velocity=0(the car started at rest)
a= acceleration= 3m/s2
t= time= 10s
Then substitute into the equation to get the final velocity.
Vf= 0+(10×3)
Vf= 30m/s
Hence, the car's final velocity is 30m/s
Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
Here we can use the work energy theorem

here we know that

as it come to rest finally



now work done by friction force will be given as


Work done by spring force is given as



so now plug in all data above


so above is the friction coefficient
F=ma
F=QE = 1.602e-19C*700N/C = 1.1214e-16N
1.1214e-16N = ma = 1.6726e-27kg * a
a = 6.702e10 m/s² along the direction of the field line