Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get

m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:

this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:

g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:

hence, the heigth is 68cm
Not what I'd call 'fast' at all.
Speed = (distance covered) / (time to cover the distance) .
Speed = (5 meters) / (10 seconds)
<em>Speed = 0.5 meter per second</em> .
That's like about 1.1 mile per hour .
Normal walking speed is considered to be around 1.4 m/s ... about 3.1 mph, or 14 meters in 10 seconds.
I've got a grandson who hasn't even turned 1 yet. He crawls and doesn't walk, but if you only cover 5m in 10s, he'd leave you in the dust pretty quick.
Well, that's a nice, concise description, but it applies to a
generator, not a motor. A motor does exactly the opposite.
It uses an electric current to produce motion in a magnetic field.
Sadly, the statement is false.
I’m pretty sure the answer would be D, sorry if it’s not correct!
Answer:30 m
Explanation:
Given
Maximum Horizontal distance is 5 m on earth
launching angle
Acceleration due to gravity on earth is 
Acceleration due to gravity on moon is 
Range of projectile is given by

----1
-----2
Divide 1 & 2

