Answer:
d. Enzymes are broken down by the reactions they catalyze.
Explanation:
Answer:
5
Explanation:
Given parameters:
Hydrogen ion concentration = 0.00001M
Unknown:
pH of the solution =?
Solution:
The pH is used to estimate the degree of acidity or alkalinity of a solution. To solve for pH of any solution, we use the expression below;
pH = -log [H⁺]
[H⁺] is the hydrogen ion concentration
pH = -log (1 x 10⁻⁵)
pH = -(-5) = 5
Surface runoff
Explanation:
The water that flows back to the streams and oceans are called surface runoff.
Surface runoff is a component of the water cycle usually composed of water in the liquid form that flows back into oceans that are nearby.
- The hydrologic cycle shows the cyclic process by which water passes in nature.
- Water passes through different forms, solid, liquid and gases.
- Surface runoff is water usually after rainfall that flows rapidly.
- They move to the final basin of deposition usually joining up with other water sources.
- This can be nearby streams, lakes or oceans.
learn more:
Downcutting a stream brainly.com/question/9259211
#learnwithBrainly
Let's rewrite the reaction for clarity:
2 SO₂(g) + O₂(g) ⇆ 2 SO₃(g) δhºrxn = –198 kj/mol
The equilibrium constant of a reaction is the ratio of the concentration its products to its reactants which are raised to their respective stoichiometric coefficients. For this reaction, the K would be
K = [SO₃]²/[SO₂]²[O₂]
To get a larger K, the products must be greater than the reactants. This means that the forward reaction must be favored to yield more of the product SO₃. There are different ways to do this: by manipulating the pressure, concentration or temperature.
For the concentration, you should add more amounts of the reactants. For the pressure, we should increase it. This is because the product side has only 2 moles of gas compared to 3 moles of gas in the reactants. So, it wall have more room for the product even at a higher pressure. Lastly, since the reaction is exothermic manifested by the negative sign of δhºrxn , the reaction would favor the forward reaction at high temperatures.