Answer:
This cannot be determined without knowing the actual mass of the objects.
Explanation:
its like trying to compare the letter A and letter B
Because water vapor, uncontained, will diffuse out into the atmosphere and is not close enough to condense back into the liquid water, so no equilib. can be established.
Answer:
6.43 moles of NF₃.
Explanation:
The balanced equation for the reaction is given below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of nitrogen trifluoride (NF₃) produced by the reaction of 9.65 moles of Fluorine gas (F₂). This can be obtained as follow:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, 9.65 moles of F₂ will react to to produce = (9.65 × 2)/3 = 6.43 moles of NF₃.
Thus, 6.43 moles of NF₃ were obtained from the reaction.
Answer:
0.11 mol
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of oxygen in a sample of acetic acid. How many moles of hydrogen are in the sample?</em>
Step 1: Given data
- Formula of acetic acid: CH₃CO₂H
- Moles of oxygen in the sample of acetic acid: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula of acetic acid, the molar ratio of H to O is 4:2.
Step 3: Calculate the moles of atoms of hydrogen
We will use the theoretical molar ratio for acetic acid.
0.054 mol O × (4 mol H/2 mol O) = 0.11 mol H
Answer:
A<u> covalent bond</u> will hold them together.
Explanation:
The two bromine atoms will share electrons to build a stronger bond and have a full valence outer shell (which makes them stable).
Hope this helps!