Answer:
A) Maltose
Explanation:
Maltose has the chemical formula of C12H22O11 which shows that it is composed of the elements carbon, hydrogen, and oxygen. Maltose also has carbon and hydrogen atoms in a 2:1 ratio.
7.8049856 g of aluminium phosphate is produced from 7.5 g of lithium phosphate in this balanced equation.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
Given data:
→ 
Moles of 7.5 g of lithium phosphate.
The molar mass of lithium phosphate is 115.79 g/mol.
Moles = 
Moles =
Moles = 
Moles = 0.06477243285
Now we will compare the moles of
with
.
: 
2 : 2
0.385 : 2÷2× 0.064 = 0.064 mol
Mass of
:
Mass of
= moles × molar mass
Mass of
=0.064 mol × 121.9529 g/mol
Mass of
= 7.8049856 g
Hence, 7.8049856 g of aluminium phosphate is produced from 7.5 g of lithium phosphate in this balanced equation.
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
Rust does not have the properties to catch onto flames. However, if you light it on fire, then it would probably catch in flames but not instantly and will not continue to burn unless you have soaked it in oil or flammable object or substance. :) Hope this helps!
Answer:
0.6 Ω
Explanation:
From the question given above, the following data were obtained:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
From Ohm's law,
V = IR
Where:
V => is the voltage
I => is the current
R => R is the resistance
With the above formula, we can obtain the resistance as follow:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
V = IR
12 = 20 × R
Divide both side by 20
R = 12 / 20
R = 0.6 Ω
Thus the resistance is 0.6 Ω