When you square the "year" of each planet and divide it by the cube of its distance, or axis from the sun, the number would be the same for all the planets
It takes more energy to remove the second electron from a lithium atom than it does to remove the fourth electron from a carbon atom because its inner core e, not valence e. C's 4th removed e is still a valence e. And also <span>because more nuclear charge acting on the second electron, it is more close to the nucleus, thus the the protons attract it more than the 4th electron.</span>
Well I can't see the following physical properties you talked about in the question.
Mass per unit volume ratio is called density.
0.4 N-s is the "impulse" acted on the "beach ball".
Option: C
Explanation:
Given that,
Mass of the "beach ball" is 0.1 kg.
The speed of the ball hits is 4 m/s.
We know that,
Whenever an object is collide with other object then an impulse is acted on object, this "impulse" causes "change in momentum".
Impulse acted on the beach ball is "mass" times "velocity".
Impulse = mass × velocity
Impulse = 0.1 × 4
Impulse = 0.4 kg m/s
Impulse = 0.4 N-s
Therefore, the "impulse" acted on the ball is 0.4 N-s.