Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
Answer:
In humans, each cell normally contains 23 pairs of chromosomes, for a total of 46.
Kinetic energy is the energy possessed by a body while in motion. It is calculated by 1/2mv², where m is the mass of the body and v is the velocity.
Therefore, kinetic energy is dependent on both mass of the body and the velocity. An increase in mass increases the kinetic energy, an increase in velocity also increases kinetic energy of the body. Thus, doubling the mass and doubling the velocity will both increase the kinetic energy of the body.
B. sent through the atmosphere