In an oxidation-reduction reaction there is an exchange of electrons.
The exchange of electrons implies change in the oxidation states: at least one element increases its oxidation number while other reduces it.
By simple ispection you can predict that in the equation b. there is a change in oxidation states of Cl and Mn.
Now you can check it:
Equation 4H Cl + Mn O2 -> Mn Cl2 + 2H2 O + Cl2
oxidation sates 1+ 1- 4+ 2- 2+ 1- 1+ 2- 0
The oxidation state of Cl in HCl is 1- and it changed to 0 in Cl2
The oxidation state of Mn in MnO2 is 4+ and it changed to 2+ in MnCl2
Answer b.
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
Because molecules in the air scatter blue light from<span> the sun </span>more than<span> they </span>scatter red light<span>.</span>
Answer:
<u>~</u><u>Law of Conservation of </u><u>energy~</u>
The law of conservation of energy states that energy can neither be created nor destroyed, only energy can be converted from one form to another.