Answer:
Part a)

Part b)

Explanation:
As per momentum conservation we know that there is no external force on this system so initial and final momentum must be same
So we will have




Part b)
By equation of kinetic energy we have




Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
Answer:
See below
Explanation:
Normal force = m g cos 53 = 8 kg * 9.8 m/s^2 * cos 53 = 47.1823 N
no work is done by this force
Force friction = coeff friction * force normal = .4 * 47.1823 = 7.55 N
work of friction = 7.55 * 2 m = 15.1 j
Force Downplane = mg sin 53 = 62.61 N
work = 62.61 * 2 = 125.22 j
Net Force downplane = force downplane - force friction = 55.06 N
net Work = force * distance = 55.06 N * 2 M = 110.12 j
Thermal is the wasted energy in a charger