Answer:
1) q=18414.93 W
2) C=12920$
Explanation:
Given data:
pipe length L=25m
pipe diameter D=100mm =0.1 m
air temperature
=
=25
°C.....= 298.15k
pipe surface temp
=150
°C.....=423.15k
surface emissivity e= 0.8
boiler efficiency η=0.90
natural gas price Cg=$0.02 per MJ
1) Total heat loss and radiation heat loss combined
q=
q=
б(
^4-
^4)]....... (1)
б=5.67×10^-8 W/m^2K^4 (boltzmann constant)
area A =L.Dπ=25×0.1π=7.85 m^2
putting all these values in eq (1)
q=18414.93 W
2) suppose boiler is operating non stop annual energy loss will be
E=q.t
=18414.93.3600.24.365
=5.81×10^11 J
to find furnace energy consumption
Ef =E/η
=6.46×10^5 MJ
annual cost
C=Cg. Ef
=12920$
Answer:
The bending stress is 502.22 MPa
Explanation:
The diameter of the pinion is equal to:

Where
m = module = 5
Np = number of teeth of pinion = 26
= 0.13 m
The pitch line velocity is equal to:

Where
wp = speed of the pinion = 1800 rpm

The factor B is equal to:

The factor A is equal to:
A = 50 + 56*(1 - B) = 50 + 56*(1-0.396) = 83.82
The dynamic factor is:

The geometry bending factor at 20°, the application factor Ka, load distribution factor Km, the size factor Ks, the rim thickness factor Kb and Ki the idler factor can be obtained from tables
JR = 0.41
Ka = 1
Kb = 1
Ks = 1
Ki = 1.42
Km = 1.7
The diametrical pitch is equal to:

The bending stress is equal to:

Answer:
Explanation:
internal combustion engine.
Answer:
clothes iron its 3rdyeyeyey
Explanation:
clothes iron its 3rd
clothes iron its 3rd
clothes iron its 3rd
clothes iron its 3rd
clothes iron its 3rd
btw quaotra
yesss