Answer:
The centripetal acceleration of the child at the bottom of the swing is 15.04 m/s².
Explanation:
The centripetal acceleration is given by:
Where:
: is the tangential speed = 9.50 m/s
r: is the distance = 6.00 m
Hence, the centripetal acceleration is:
Therefore, the centripetal acceleration of the child at the bottom of the swing is 15.04 m/s².
I hope it helps you!
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:
Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:
It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.
At a distance r from a charge e on a particle of mass m the electric field value is 8.9876 × 10⁹ N·m²/C². Divide the magnitude of the charge by the square of the distance of the charge from the point. Multiply the value from step 1 with Coulomb's constant.
<h3>what is magnitude ?</h3>
Magnitude can be defined as the maximum extent of size and the direction of an object.
It is used as a common factor in vector and scalar quantities, as we know scalar quantities are those quantities that have magnitude only and vector quantities are those quantities have both magnitude and direction.
There are different ways where magnitude is used Magnitude of earthquake, charge on an electron, force, displacement, Magnitude of gravitational force
For more details regarding magnitude, visit
brainly.com/question/28242822
#SPJ1
A textbook would hit the ground first
Factors:
-Textbook weighs most
-Pillow is flat and fluffy not very aerodynamic) also is very light
-Paper airplane will glide to the ground do to its wings and will hit the ground last
The mass of an object always stays the same since it is really just the amount of matter in an object so no matter the force applied, as long as the object does not lose or gain matter, the object stays the same