For light or ultraviolet, the formula for energy can be
calculated using Planck’s equation. That is:
E = h c / ʎ
where,
h is the Planck’s constant = 6.626 * 10^-34 m^2 kg
/ s
c is the speed of light = 3 * 10^8 m/s
ʎ is the wavelength of light = 110 nm = 110 x 10^-9 m
So calculating for energy E:
E = (6.626 * 10^-34 m^2 kg / s) * (3 * 10^8 m/s) /
(110 x 10^-9 m)
E = 1.807 x 10^-18 J
Answer:
0.823 Nm
Explanation:
current, i = 100 A
radius, r = 10 cm
Angle between the normal and the magnetic field, θ = 30°
Magnetic field, B = 0.524 T
Torque is defined as the


Torque = 0.823 Nm
Thus, the torque is 0.823 Nm.
Answer: 0.145 seconds
Explanation:
Given that Roger Clemens could routinely throw a fastball at a horizontal speed of 119.7 m/s. How long did the ball take to reach home plate 17.3 m away
Since the speed is horizontal
Using the formula for speed which is
Speed = distance/time
Where
Speed = 119.7 m/s
Distance covered = 17.3 m
Time is what we are looking for
Substitute all the parameters into the formula
119.7 = 17.3/ time
Make time the subject of formula
Time = 17.3 / 119.7
Time = 0.145 seconds.
Therefore, it will take 0.145 seconds to reach the home plates
Answer:
Explanation:
At the time of a body achieving terminal velocity, the drag force becomes equal to the weight of the body less the buoyant force by the surrounding medium which can be represented by the following equation

Where r is radius of the body , d is density of the material of the body σ is density of the medium and n is coefficient of viscosity of the medium and v is terminal velocity.
Simplifying
v = 
Assuming the value of density of air as 1.225 kg/m³ and putting other given values in the formula we get
v =
[/tex]
v = 387 x 10⁻⁵ m/s
Terminal velocity = 387 x 10⁻⁵ m/s
Time taken to fall a distance of 100 m
= 
= 2.6 x 10⁴ s.
Answer:
1) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.
2) In equilibrium, there is no net flow of mobile charged particles inside a conductor.
3) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.
Explanation:
1) and 3) A block of copper is a conductor. The charged particles on a conductor in equilibrium are at rest, so the intensity of the electric field at all interior points of the conductor is zero, otherwise, the charges would move resulting in an electric current.
2) The charged particles on a conductor in equilibrium are at rest.