When a system experiences a disturbance ( such as concentration, temperature, or pressure changes), it will respond to restore a new equilibrium state.
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />
Answer:
Hydrochloride acid + Zinc = Zinc Chloride + Hydrogen
Explanation:
When Hydrochloride acid and Zinc react, it results in the formation of Zinc chloride and hydrogen.
<em>Hope I helped</em>
<span> Ag(NH3)2Cl + 3HNO3 = AgNO3 +2NH4NO3 + HCl </span>
<span>or
Ag(NH3)2Cl + HNO3 = Ag(NH3)2NO3 + HCl this the complete balanced equation
now remove spectator ions to get net ionic equation
so
</span>
<span>
2H+ + 2NO3- + [Ag(NH3)2]+ Cl- -> AgCl + 2NH4+ + 2NO3- 2NO3- 2H+ [Ag(NH3)2]+ + Cl- -> AgCl + 2NH4+
</span>hope it helps