Answer:
DS = 13865.7[J/K]
Explanation:
We can calculate the energy of the rock, like the potential energy relative to the lake level. Which can be calculated by means of the following expression of the potential energy:
![E_{p}=m*g*h\\\\where:\\m = mass = 2000[kg]\\h = elevation = 200 [m]\\g = gravity = 9.81[m/s^2]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%202000%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%20200%20%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D)
Therefore:
![E_{p}=2000*9.81*200\\E_{p}=3924000 [J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%3D2000%2A9.81%2A200%5C%5CE_%7Bp%7D%3D3924000%20%5BJ%5D%5C%5C)
This energy is transformed into thermal energy.
we shall remember that isothermal heat transfer processes are internally reversible, so the entropy change of a system during one of these processes can be determined, by the following expression.
![DS=\frac{Q}{T}\\ where:\\DS = entropy change [J/K]\\Q = Heat transfer [J]\\T = temperature [K]](https://tex.z-dn.net/?f=DS%3D%5Cfrac%7BQ%7D%7BT%7D%5C%5C%20where%3A%5C%5CDS%20%3D%20entropy%20change%20%5BJ%2FK%5D%5C%5CQ%20%3D%20Heat%20transfer%20%5BJ%5D%5C%5CT%20%3D%20temperature%20%5BK%5D)
T = 5 + 278 = 283[K]
DS = 3924000 / 283
DS = 13865.7[J/K]
Hey There,
Question: <span>Which chemical can be toxic to the cells of it’s not removed?
Answer: D. Carbon Dioxide
If This Helps May I Have Brainliest?</span>
Answer:
16.33°C
Explanation:
Applying,
Heat lost by copper = heat gained by water
cm(t₁-t₃) = c'm'(t₃-t₂).............. Equation 1
Where c = specific heat capacity of copper, m = mass of copper, c' = specific heat capacity of water, m' = mass of water, t₁ = initial temperature of copper, t₂ = initial temperature of water, t₃ = final equilibrium temperature.
From the question,
Given: m = 50 kg, t₁ = 140°C, m' = 90 L = 90 kg, t₂ = 10°C
Constant: c = 385 J/kg°C, c' = 4200J/kg°C
Substitute these values into equation 1
50(385)(140-t₃) = 90(4200)(t₃-10)
(140-t₃) = 378000(t₃-10)/19250
(140-t₃) = 19.64(t₃-10)
140-t₃ = 19.64t₃-196.6
19.64t₃+t₃ = 196.4+140
20.64t₃ = 336,4
t₃ = 336.4/20.6
t₃ = 16.33°C
The mass of 1.0 l of water in grams is 1,000 g ;)
Not much changes, but there are some great pressure so some hills may form.