1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
2 years ago
12

A spring is 6.0cm long when it is not stretched, and 10cm long when a 7.0N force is applied. What force is needed to make it 20c

m long?
Physics
1 answer:
Artist 52 [7]2 years ago
7 0

Answer:

Approximately 25\; {\rm N} (assuming that this spring is ideal.)

Explanation:

The displacement of a spring is the new length of the spring relative to the original length.

For example:

  • When the 6.0\; {\rm cm}-spring in this question is stretched to 10\; {\rm cm}, the displacement is x = (10\; {\rm cm} - 6.0\; {\rm cm}).
  • Likewise, if this spring is stretched to 20\; {\rm cm}, the displacement would be (20\; {\rm cm} - 6\; {\rm cm}).

If this spring is ideal, the force on the spring would be proportional to the displacement of the spring. In other words, if a force of F_{\text{a}} displaces this spring by x_{\text{a}}, while a force of F_{\text{b}} displaces this spring by x_{\text{b}}, then:

\displaystyle \frac{F_{\text{a}}}{x_{\text{a}}} = \frac{F_{\text{b}}}{x_{\text{b}}}.

In this question, it is given that a force of F_{\text{a}} = 7.0 \; {\rm N} would stretch this spring by x_{\text{a}} = (10\; {\rm cm} - 6.0\; {\rm cm}). Thus, the force F_{\text{b}} required to stretch this spring by x_{\text{a}} = (20\; {\rm cm} - 6.0\; {\rm cm}) would satisfy:

\displaystyle \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}}= \frac{F_{\text{b}}}{20\; {\rm cm} - 6.0\; {\rm cm}}.

Rearrange and solve for F_{\text{b}}:

\begin{aligned} F_{\text{b}} &= \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}} \, (20\; {\rm cm} - 6.0\; {\rm cm}) \\ &\approx 25\; {\rm N}\end{aligned}.

You might be interested in
Which celestial objects come in direct contact with earth
Lubov Fominskaja [6]

Answer:

Sun

Explanation:

Any asteroid in space is a celestial body. Classification of Celestial Bodies. A star is a form of a celestial object made up of a shining spheroid of plasma held together by its own gravity. The nearby star to Earth is the Sun.

8 0
3 years ago
Consider the model above. It represents the electrical force. As r increases, the attractive force decreases. How would this mod
aivan3 [116]

Answer:

As we keep on increasing the radius the value of the gravitation force of attraction decreases and as we decrease the radius the gravitation force increases.

Explanation:

Like the coulombs law of electrostatics, the law of gravitation also depends inversely on the square of the value of r. Therefore, as we keep on increasing the value of r the value of the gravitation force decreases and as we decrease the value of the r the value of gravitation force increases.

Gravitation Force=\frac{Gm_{1}m_{2} }{r^{2}}

Coulombs's Law= \frac{Kq_{1}q_{2} }{r^{2}}

6 0
4 years ago
Read 2 more answers
True/False: Paraphrasing Einstein’s Theory of General Relativity, gravity "handprint" makes an "indentation" in the fabric of sp
Y_Kistochka [10]
B.False

Einstein's vision of GR is NOT that somehow Gravity comes along and alters (indents?) some existing structure.
It is that Gravity (with its four possible sources) actually determines the entire global structure of Space-Time in which such sources are extant.
6 0
3 years ago
A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 4 ft/s along
babymother [125]

Answer:

Explanation:

height of pole = 15 ft

height of man = 6 ft

Let the length of shadow is y .

According to the diagram

Let at any time the distance of man is x.

The two triangles are similar

\frac{y-x}{y}=\frac{6}{15}

15 y - 15 x = 6 y

9 y = 15 x

y=\frac{5}{3}x

Differentiate with respect to time.

\frac{dy}{dt}=\frac{5}{3}\frac{dx}{dt}

As given, dx/dt = 4 ft/s

\frac{dy}{dt}=\frac{5}{3}\times 4

\frac{dy}{dt}=\frac{20}{3} ft/s

6 0
4 years ago
At the equator, the radius of the Earth is approximately 6370 km. A plane flies at a very low altitude at a constant speed of v
Anna007 [38]

To solve this problem we will apply the concepts related to the kinematic equations of linear motion. For this purpose we will define the speed as the distance traveled in a given period of time. Here the distance is equivalent to the orbit traveled around the earth, that is, a circle. Approaching the height of the aircraft with the radius of the earth, we will have the following data,

R= 6370*10^3 m

v = 219m/s

a = 17m/s^2

The circumference of the earth would be

\phi = 2\pi R

Velocity is defined as,

v = \frac{x}{t}

t = \frac{x}{v}

Herex = \phi, then

t = \frac{\phi}{v} = \frac{2\pi (6370*10^3)}{219}

t = 1.82*10^5s

Therefore will take 1.82*10^5 s or 506 hours, 19 minutes, 17 seconds

3 0
3 years ago
Other questions:
  • A single point charge q is located at the center of both an imaginary cube and an imaginary sphere. How does the electric flux t
    7·1 answer
  • Which transfer of energy occurs mainly through the process of convection?
    8·1 answer
  • What does the word deficiency mean<br> a.need<br> b.excess<br> c.problem<br> d.lack
    15·1 answer
  • A single-turn square loop carries a current of 16 A . The loop is 15 cm on a side and has a mass of 3.8×10^−2kg . Initially the
    15·1 answer
  • Rainbow can appear at night,they are called Moonbow?
    5·1 answer
  • __________________ have almost no mass. A.protons B.neutrons C.electrons D.atoms
    7·1 answer
  • Electric field lines point from positive charges to negative charges. A. True B. False​
    15·1 answer
  • What were the three factors that affected density
    9·1 answer
  • Pls help i’m begging you
    6·1 answer
  • How do mass and distance affect the gravitational force between two objects?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!