Answer:1.55 times
Explanation:
Given
First wavelength
Second wavelength
According wien's diplacement law

where 
T=Temperature
Let
be the temperatures corresponding to
respectively.



Thus object with
is 1.55 times hotter than object with wavelength 
Answer:
T=575.16K
Explanation:
To solve the problem we proceed to use the 1 law of diffusion of flow,
Here,

is the rate in concentration
is the rate in thickness
D is the diffusion coefficient, where,

Replacing D in the first law,

clearing T,

Replacing our values



<span>In an experiment, a researcher can make claims about causation if the independent variable changes because of changes made to the dependent variable. Causation works on cause and effect, so the changed independent variable is the cause and the changed dependent variable is the effect. In an experiment the independent variable is changed to determine the dependent variables value, so the two are directly related.</span>
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.
GPE= weight•height= 15 N• 0.22meter= 3.3 Joules
I hope this helps ~~Charlotte~~