Answer:
a. same
b. less
c. same
d. same?
Explanation:
the mass will always be the same no matter where it is. the weight however depends on the gravity.
Answer:
a). V = 3.13*10⁶ m/s
b). T = 1.19*10^-7s
c). K.E = 2.04*10⁵
d). V = 1.02*10⁵V
Explanation:
q = +2e
M = 4.0u
r = 5.94cm = 0.0594m
B = 1.10T
1u = 1.67 * 10^-27kg
M = 4.0 * 1.67*10^-27 = 6.68*10^-27kg
a). Centripetal force = magnetic force
Mv / r = qB
V = qBr / m
V = [(2 * 1.60*10^-19) * 1.10 * 0.0594] / 6.68*10^-27
V = 2.09088 * 10^-20 / 6.68 * 10^-27
V = 3.13*10⁶ m/s
b). Period of revolution.
T = 2Πr / v
T = (2*π*0.0594) / 3.13*10⁶
T = 1.19*10⁻⁷s
c). kinetic energy = ½mv²
K.E = ½ * 6.68*10^-27 * (3.13*10⁶)²
K.E = 3.27*10^-14J
1ev = 1.60*10^-19J
xeV = 3.27*10^-14J
X = 2.04*10⁵eV
K.E = 2.04*10⁵eV
d). K.E = qV
V = K / q
V = 2.04*10⁵ / (2eV).....2e-
V = 1.02*10⁵V
Since the baseball is half the weight of the softball, the baseball has to go twice as fast as the softball.
So the best answer would be D
Answer:
Explanation:A covalent bond is formed when electrons are shared between non-metal atoms, and the positive nuclei are attracted towards the pair of negative bonded electrons. ... Hence, the hydrogen bond is weaker than ionic and covalent bonds. Example: Water molecules are held to each other by intermolecular forces of attraction.
Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.
Explanation:
- Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
- Let
be the speed of the river's current given as 1.00 m/s.
- Note that this speed is the magnitude of the velocity which is a vector quantity.
- The direction of the swimmer is upstream.
Hence the resultant velocity is given as,
= S — S 0
= 1.25 — 1
= 0.25 m/s.
Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.