Answer:
Explanation:
Let the charge particle have charge equal to +q .
force due to electric field will be along the field that is along y - axis . To balance it force by magnetic force must be along - y axis. ( negative of y axis )
force due to magnetic field = q ( v x B ) , v is velocity and B is magnetic field.
F = q ( v i x B k ) , ( velocity is along x direction and magnetic field is along z axis. )
= (Bqv) - j
= - Bqv j
The force will be along - ve y - direction .
If we take charge as negative or - q
force due to electric field will be along - y axis .
magnetic force = F = -q ( v i x B k )
= + Bqv j
magnetic force will be along + y axis
So it is difficult to find out the nature of charge on the particle from this experiment.
Explanation: (I think)
Plug your values into the momentum equation.
So m1= 63kg
m2 = 10 kg
V1 = 12 m/s
And then plug in your values and solve for your unknown (v2)
Answer:
B. and D. would be my best guess.
Explanation:
The reason why is because if you lower the resistance, the voltage will be higher, and if you higher the voltage, the resistance would be lower and the voltage would higher.
Answer:
The pilot is 2214.22 miles from her starting position
Explanation:
Since the pilot is traveling at a constant speed of 635 mph, the total distance traveled can be easily found as follows:

There was a 10 degrees deviation, so the angle between the trajectory of both legs is 170 degrees.
The distance we need to find is that from the start of the first leg to the end of the second leg, those three distances form a triangle and since the side we're interested in is opposite to the 170 degrees angle, we can determine its length by the law of cosines:

The pilot is 2214.22 miles from her starting position