Answer:
Total worth of gold in the ocean = $5,840,000,000,000,000
Explanation:
As stated in the question above, 4.0 x 10^-10 g of gold was present in 2.1mL of ocean water.
Therefore, In 1 L of ocean water there will be,
(4.0 x 10^-10)/0.0021
= 1.9045 x 10^-7 g of gold per Liter of ocean water.
So in 1.5 x 10^-21 L of ocean water, there will be
(1.9045 x 10^-7) * (1.5 x 10^-21)
= 2.857 x 10^14 g of gold in the ocean.
1 gram of gold costs $20.44, that is 20.44 dollars/gram. The total cost of the gold present in the ocean is
20.44 * (2.857 x 10^14)
= $5,840,000,000,000,000
Answer:
the pressure exerted in pascals is 0.5 Pa
Explanation:
The computation of the pressure exerted in pascals is shown below:
As we know that
Pressure = force ÷ area
= 25 ÷ 50
= 0.5 Pa
Hence, the pressure exerted in pascals is 0.5 Pa
We simply applied the above formula so that the correct pressure could come
Answer is: <span>concentration of NOCl is 3.52 M.
</span>
Balanced chemical reaction: 2NOCl(g) ⇄ 2NO(g) + Cl₂<span>(g).
Kc = 8.0.
</span>[NOCl] = 1.00 M; equilibrium concentration.
[NO] = x.
[Cl₂] = x/2; equilibrium concentration of chlorine.<span>
Kc = </span>[Cl₂] ·[NO]² / [NOCl].
8.00 = x/2 · x² / 1.
x³/2 = 8.
x = ∛16.
x = 2.52 M.
co(NOCl) = [NOCl] + x.
co(NOCl) = 1.00 M + 2.52 M.
co(NOCl) = 3.52 M; the initial concentration of NOCl.
Answer:
11.66 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If P and T are constant, and have different values of n and V:
<em>(V₁n₂) = (V₂n₁).</em>
V₁ = 25.5 L, n₁ = 3.5 mol.
V₂ = ??? L, n₂ = 3.5 mol - 1.9 mol = 1.6 mol.
<em>∴ V₂ = (V₁n₂)/(n₁)</em> = (25.5 L)(1.6 mol)/(3.5 mol) =<em> 11.66 L.</em>
Review and Study Material Before Going to
Class.
Seek Understanding.
Take Good Notes.
Practice Daily.
Take Advantage of Lab Time.
Use Flashcards.
Use Study Groups.
Break Large Tasks Into Smaller Ones.