Answer:
CH₂
Explanation:
From the question given above, the following data were obtained:
Mass of compound = 1 g
Mass of CO₂ = 3.14 g
Mass of H₂O = 1.29 g
Empirical formula =?
Next, we shall determine the mass of Carbon and hydrogen present in the compound. This can be obtained as follow:
For Carbon, C:
Mass of CO₂ = 3.14 g
Molar mass of CO₂ = 12 + (2×16)
= 12 + 32
= 44 g/mol
Molar mass of C = 12 g/mol
Mass of C =?
Mass of C = molar mass of C/ Molar mass of CO₂ × Mass of CO₂
Mass of C = 12/44 × 3.14
Mass of C = 0.86 g
For hydrogen, H:
Mass of C = 0.86 g
Mass of compound = 1 g
Mass of H =?
Mass of H = (Mass of compound) – (mass of C)
Mass of H = 1 – 0.86
Mass of H = 0.14 g
Finally, we shall determine the empirical formula of the cyclopropane. This can be obtained as follow:
Mass of C = 0.86 g
Mass of H = 0.14 g
Divide by their molar mass
C = 0.86 / 12 = 0.07
H = 0.14 / 1 = 0.14
Divide by the smallest
C = 0.07 / 0.07 = 1
H = 0.14 / 0.07 = 2
Thus, the empirical formula of cyclopropane is CH₂
<u>Answer:</u> The molality of magnesium chloride is 1.58 m
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute (magnesium chloride) = 75.0
= Molar mass of solute (magnesium chloride) = 95.21 g/mol
= Mass of solvent = 500.0 g
Putting values in above equation, we get:

Hence, the molality of magnesium chloride is 1.58 m
Answer:
As heat is applied to liquid water, the molecules move faster and the temperature again increases. During the phase change from liquid to gas, the added heat is stored in the molecules as, once again, potential energy, and the temperature remains constant.
Explanation:
<span>The ocean absorbs and stores energy from the sun and when precipitation falls , it release heat energy in the atmosphere(air)</span>