Answer:
gas and element and compound
Explanation:
because it's different and more power so the elements
Answer:
snow storm and a blizzard
Explanation:
Answer:
it will attract an object that has a negative charge
Answer:
0.1077 grams
Explanation:
First we will employ the ideal gas law to determine the number of moles of nitrogen gas.
PV=nRT
P=2 atm
V=20L
R=0.08206*L*atm*mol^-1*K^-1
T=323.15 K
Thus, 2atm*20L=n*0.08206*L*atm*mol^-1*K^-1*323.15K
K, atm, and L cancels out. Thus n=2*20mol/0.08206*323.15=1.5 moles
Lastly, we must convert the number of moles to grams. This can be done by dividing the number of moles by the molar mass of nitrogen gas, which is 14 grams.
1.5/14=0.1077 grams
Answer:
-476.95 Kj
Explanation:
N2H4(l) + N2O4(g) = 2N2O(g) + 2H20(g)
∆Hrxn = n∆Hf(products) - m∆Hf(reactants)
Where n and m = stoichiometric coefficients of the products and reactants respectively from the balanced chemical equation, ∆Hf = standard enthalpy of formation, ∆Hrxn= standard enthalpy of reaction.
Using the following standard enthalpies of formation ( you did not provide any ):
N2H4(l) = +50.63Kj/mol; N2O4(g) = +9.08Kj/mol; N2O(g) =+33.18Kj/mol; H2O(g) = -241.8Kj/mol
∆Hrxn = [ (2(∆Hf(N2O)) + (2(∆Hf(H2O))] – [(1(∆Hf(N2H4)) + (1(∆Hf(N2O4))]
∆Hrxn = [ 2(+33.18) + 2(-241.8)] – [ (+50.63) + (+9.08)]
∆Hrxn = [ (+66.36)+(-483.6)] – [ +50.63+9.08]
∆Hrxn = [ +66.36-483.6] – [+59.71]
∆Hrxn = -417.24-59.71
∆Hrxn = -476.95 Kj
NOTE: Remember to use the standard enthalpies of formation given to you by your instructor if they differ from the values used herein, and follow the same procedure.