Answer:
The ball's initial kinetic energy
The ball comes to a stop at B. At this point its initial kinetic energy is converted into potential energy
Explanation:
A ball is fixed to the end of a string, which is attached to the ceiling at point P. As the drawing shows, the ball is projected downward at A with the launch speed v0. Traveling on a circular path, the ball comes to a halt at point B. What enables the ball to reach point B, which is above point A? Ignore friction and air resistance.
From conservation of energy which states that energy can neither be created nor be destroyed, but can be transformed from one form to another.
Ki+Ui=Kf+Uf
Ki=initial kinetic energy
Ui=initial potential energy
Kf=final kinetic energy
Uf=final potential energy
we know that 
m=mass of the ball
ha=downward height a
hb=upward height b
u=initial velocity u
v=final velocity v, which is 0
g=acceleration due to gravity
v=0 at final velocity
1/2mu^2+mgha=0+1/2mv^2
ha=hb+Ki/mh
From the above equation, we can conclude that the ball's initial kinetic energy is responsible for making the ball reach point B.
Point B is higher than point A from the motion gained by the ball
Free fall means rapid fall or a downward motion due to gravity. Sentence example: When Joe was accidentally bumped by Sarah, he was sent towards a free fall down the escalator, leading to a serious injury on his arm and two legs.
Answer:
A) Greater than the attraction between two small objects the same distance apart.
Explanation:
The gravitational force between two objects is:
F = GMm / r²
where G is the gravitational constant,
M is the mass of one object,
m is the mass of the other object,
and r is the distance between the objects.
If the distance is the same, then two large objects will have a larger gravitational force between them than two small objects.
Heaviest one always have the most kinetic E. for example, Didier drogba was running then nobody can stop him cuz his heavyyyyyy
C I think the answer is true