Answer:
(a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.
Explanation:
Given that,
Radius = 11.9 cm
Magnetic flux ![\phi=8.60\times10^{-3}\ T m^2](https://tex.z-dn.net/?f=%5Cphi%3D8.60%5Ctimes10%5E%7B-3%7D%5C%20T%20m%5E2)
(a). We need to calculate the strength of the magnetic field
Using formula of magnetic flux
![\phi=BA\cos\theta](https://tex.z-dn.net/?f=%5Cphi%3DBA%5Ccos%5Ctheta)
![\phi=BA\cos0](https://tex.z-dn.net/?f=%5Cphi%3DBA%5Ccos0)
![\phi=BA](https://tex.z-dn.net/?f=%5Cphi%3DBA)
![B=\dfrac{\phi}{A}](https://tex.z-dn.net/?f=B%3D%5Cdfrac%7B%5Cphi%7D%7BA%7D)
![B=\dfrac{\phi}{\pi r^2}](https://tex.z-dn.net/?f=B%3D%5Cdfrac%7B%5Cphi%7D%7B%5Cpi%20r%5E2%7D)
Put the value into the formula
![B=\dfrac{8.60\times10^{-3}}{\pi\times(11.9\times10^{-2})^2}](https://tex.z-dn.net/?f=B%3D%5Cdfrac%7B8.60%5Ctimes10%5E%7B-3%7D%7D%7B%5Cpi%5Ctimes%2811.9%5Ctimes10%5E%7B-2%7D%29%5E2%7D)
![B=0.1933\ T](https://tex.z-dn.net/?f=B%3D0.1933%5C%20T)
(b). If the magnetic field is directed parallel to the plane of the loop,
We need to calculate the magnetic flux through the loop
Using formula of flux
![\phi=BA\cos\theta](https://tex.z-dn.net/?f=%5Cphi%3DBA%5Ccos%5Ctheta)
Here, ![\theta=90^{\circ}](https://tex.z-dn.net/?f=%5Ctheta%3D90%5E%7B%5Ccirc%7D)
![\phi=BA\cos90](https://tex.z-dn.net/?f=%5Cphi%3DBA%5Ccos90)
![\phi=0](https://tex.z-dn.net/?f=%5Cphi%3D0)
Hence, (a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.