Answer:
It is easier to stop the bicycle moving at a lower velocity because it will require a <em>smaller force</em> to stop it when compared to a bicycle with a higher velocity that needs a<em> bigger force.</em>
Explanation:
The question above is related to "Newton's Law of Motion." According to the <em>Third Law of Motion</em>, whenever an object exerts a force on another object <em>(action force)</em>, an equal force is exerted against it. This force is of the same magnitude but opposite direction.
When it comes to moving bicycles, the force that stops their movement is called "friction." Applying the law of motion, the higher the speed, the higher the force<em> </em>that is needed to stop it while the lower the speed, the lower the force<em> </em>that is needed to stop it.
Answer:
0.266 m
Explanation:
Assuming the lump of patty is 3 Kg then applying the principal of conservation of linear momentum,
P= mv where p is momentum, m is mass and v is the speed of an object. In this case
where sunscripts p and b represent putty and block respectively, c is common velocity.
Substituting the given values then
3*8=v(15+3)
V=24/18=1.33 m/s
The resultant kinetic energy is transferred to spring hence we apply the law of conservation of energy
where k is spring constant and x is the compression of spring. Substituting the given values then

Answer:
a) 0.05s
b) 4000N
Explanation:
a)When car is stopped its final velocity become zero
U- 10 m/s
V- 0 m/s
S - 0.25 m
t -?
S = (v+u)*t/2
0.25 =(10+0)*t/2
t = 0.05s
b) If we happened to calculate the avarage force we have to consider about acceleration
V= 0
U = 10
t = 0.05 s
a =?
V = U + at
0 = 10 -a * 0.05
a = 200 m/s2
F = m *a
= 20 * 200
= 4000N
Answer:
Typically found in eukaryotic cells, centrioles are cylindrical (tube-like) structures/organelles composed of microtubules. In the cell, centrioles aid in cell division by facilitating the separation of chromosomes. For this reason, they are located near the nucleus.
Weight = (mass) x (acceleration of gravity)
Acceleration of gravity = 9.81 m/s² on Earth, 1.62 m/s² on the Moon.
The feather's weight is . . .
On Earth: (0.0001 kg) x (9.81 m/s²) = <em>0.000981 Newton </em>
On the Moon: (0.0001 kg) x (1.62 m/s²) = <em>0.000162 N</em>
The presence or absence of atmosphere makes no difference. In fact, the numbers would be the same if the feather were sealed in a jar, or spinning wildly in a tornado, or hanging by a thread, or floating in a bowl of water or chicken soup. Weight is just the force of gravity between the feather and the Earth. It's not affected by what's around the feather, or what's happening to it.