Answer:
<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

- v is image distance
- u is object distance, u is 10 cm
- f is focal length, f is 5 cm

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>
• Let's derive this formula from the lens formula:

» Multiply throughout by fv

• But we know that, v/u is M

- v is image distance, v is 10 cm
- f is focal length, f is 5 cm
- M is magnification.

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>
- Image is magnified
- Image is erect or upright
- Image is inverted
- Image distance is identical to object distance.
Answer:
Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. Although a vector has magnitude and direction, it does not have position.
Explanation:
The only thing I found in my notes for this question was this although it isn't in your choices, I just hope this helps you and hope you get it right!
Answer:
.
Explanation:
When the ball is placed in this pool of water, part of the ball would be beneath the surface of the pool. The volume of the water that this ball displaced is equal to the volume of the ball that is beneath the water surface.
The buoyancy force on this ball would be equal in magnitude to the weight of water that this ball has displaced.
Let
denote the mass of this ball. Let
denote the mass of water that this ball has displaced.
Let
denote the gravitational field strength. The weight of this ball would be
. Likewise, the weight of water displaced would be
.
For this ball to stay afloat, the buoyancy force on this ball should be greater than or equal to the weight of this ball. In other words:
.
At the same time, buoyancy is equal in magnitude the the weight of water displaced. Thus:
.
Therefore:
.
.
In other words, the mass of water that this ball displaced should be greater than or equal to the mass of of the ball. Let
denote the density of water. The volume of water that this ball should displace would be:
.
Given that
while
:
.
In other words, for this ball to stay afloat, at least
of the volume of this ball should be under water. Therefore, the volume of this ball should be at least
.