1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
4 years ago
6

2. A conducting sphere with neutral charge is connected to the ground. A negatively charged rod is

Physics
1 answer:
natka813 [3]4 years ago
4 0
C)negative if that’s not the answer it’s B
You might be interested in
This chemical equation represents the burning of methane, but the equation is incomplete. What is the missing coefficient in bot
kolezko [41]
Your complete chemical equation is CH4+O2=CO3+H2O
8 0
3 years ago
Read 2 more answers
2. A 20 cm object is placed 10cm in front of a convex lens of focal length 5cm. Calculate
adoni [48]

Answer:

<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

  • v is image distance
  • u is object distance, u is 10 cm
  • f is focal length, f is 5 cm

{ \tt{ \frac{1}{v} +  \frac{1}{10} =  \frac{1}{5}   }} \\  \\  { \tt{ \frac{1}{v}  =  \frac{1}{10} }} \\  \\ { \tt{v = 10}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: image \: distance \: is \: 10 \: cm \:  \: }}}}}

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>

• Let's derive this formula from the lens formula:

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

» Multiply throughout by fv

{ \tt{fv( \frac{1}{v} +  \frac{1}{u} ) = fv( \frac{1}{f}  )}} \\   \\ { \tt{ \frac{fv}{v}  +  \frac{fv}{u}  =  \frac{fv}{f} }} \\  \\  { \tt{f + f( \frac{v}{u} ) = v}}

• But we know that, v/u is M

{ \tt{f + fM = v}} \\  { \tt{f(1 +M) = v }} \\ { \tt{1 +M =  \frac{v}{f}  }} \\  \\ { \boxed{ \mathfrak{formular :  } \: { \tt{ M =  \frac{v}{f}  - 1 }}}}

  • v is image distance, v is 10 cm
  • f is focal length, f is 5 cm
  • M is magnification.

{ \tt{M =  \frac{10}{5} - 1 }} \\  \\ { \tt{M = 5 - 1}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: magnification \: is \: 4}}}}}

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>

  • Image is magnified
  • Image is erect or upright
  • Image is inverted
  • Image distance is identical to object distance.
4 0
2 years ago
Which quantities indicate a direction and a magnitude?<br>Check all that apply.​
Korvikt [17]

Answer:

Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. Although a vector has magnitude and direction, it does not have position.

Explanation:

The only thing I found in my notes for this question was this although it isn't in your choices, I just hope this helps you and hope you get it right!

7 0
4 years ago
Work is done if you carry a plant across a room at constant velocity. True False
BlackZzzverrR [31]

it is false hope this helps

5 0
4 years ago
Read 2 more answers
A ball with a mass of 2000 g is floating on the surface of a pool of water. What is the minimum volume that the ball could have
Doss [256]

Answer:

2000\; {\rm cm^{3}}.

Explanation:

When the ball is placed in this pool of water, part of the ball would be beneath the surface of the pool. The volume of the water that this ball displaced is equal to the volume of the ball that is beneath the water surface.

The buoyancy force on this ball would be equal in magnitude to the weight of water that this ball has displaced.

Let m(\text{ball}) denote the mass of this ball. Let m(\text{water}) denote the mass of water that this ball has displaced.

Let g denote the gravitational field strength. The weight of this ball would be m(\text{ball}) \, g. Likewise, the weight of water displaced would be m(\text{water})\, g.

For this ball to stay afloat, the buoyancy force on this ball should be greater than or equal to the weight of this ball. In other words:

\text{buoyancy} \ge m(\text{ball})\, g.

At the same time, buoyancy is equal in magnitude the the weight of water displaced. Thus:

\text{buoyancy} = m(\text{water}) \, g.

Therefore:

m(\text{water})\, g = \text{buoyancy} \ge m(\text{ball})\, g.

m(\text{water}) \ge m(\text{ball}).

In other words, the mass of water that this ball displaced should be greater than or equal to the mass of of the ball. Let \rho(\text{water}) denote the density of water. The volume of water that this ball should displace would be:

\begin{aligned}V(\text{water}) &= \frac{m(\text{water})}{\rho(\text{water})} \\ &\ge \frac{m(\text{ball}))}{\rho(\text{water})}  \end{aligned}.

Given that m(\text{ball}) = 2000\; {\rm g} while \rho = 1.00\; {\rm g\cdot cm^{-3}}:

\begin{aligned}V(\text{water}) &\ge \frac{m(\text{ball}))}{\rho(\text{water})}  \\ &= \frac{2000\; {\rm g}}{1.00\; {\rm g\cdot cm^{-3}}} \\ &= 2000\; {\rm cm^{3}}\end{aligned}.

In other words, for this ball to stay afloat, at least 2000\; {\rm cm^{3}} of the volume of this ball should be under water. Therefore, the volume of this ball should be at least 2000\; {\rm cm^{3}}\!.

3 0
2 years ago
Other questions:
  • The vitreous humor, a transparent, gelatinous fluid that fills most of the eyeball, has an index of refraction of 1.34. Visible
    11·1 answer
  • As air becomes warmer, it
    10·2 answers
  • A light ray in air enters and passes through a block of glass. What can be stated with regard to its speed after it emerges from
    5·1 answer
  • What is the speed u of the object at the height of (1/2)hmax? Express your answer in terms of v and g. Use three significant fig
    15·1 answer
  • 1200 kg car is being driven down a road. If it has 101 kJ of kinetic energy, what is its speed?
    11·1 answer
  • Explain how the data collected and the calculations for the first and second resonance points in today's experiment would change
    8·1 answer
  • An insulated Thermos contains 140 cm3 of hot coffee at 85.0°C. You put in a 15.0 g ice cube at its melting point to cool the cof
    5·1 answer
  • 2. A 50 kg diver is standing on the edge of a 15 m high cliff. What is his potential energy?
    14·1 answer
  • Plz help me make a nice C-E-R for science I will give brainly for the best C-E-R
    11·1 answer
  • Why do we add alcohol/ethanol to the leaf once it is boiled?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!