The chemical reaction equation for this is
XeF6 + 3H2 ---> Xe + 6HF
Assuming gas behaves ideally, we use the ideal gas formula to solve for number of moles H2 with T = 318.15K (45C), P = 6.46 atm, V = 0.579L. Then we use the gas constant R = 0.08206 L atm K-1 mol-1.
we get n = 0.1433 moles H2
to get the mass of XeF6,
we divide 0.1433 moles H2 by 3 since 1 mole XeF6 needs 3 moles H2 to react then multiply by the molecular weight of XeF6 which is 245.28 g/mole XeF6.
0.1433 moles H2 x

x

= 11.71 g XeF6
Therefore, 11.71 g of XeF6 is needed to completely react with 0.579 L of Hydrogen gas at 45 degrees Celcius and 6.46 atm.
Answer:

Explanation:
Hello,
In this case, for a first-order reaction, we can firstly compute the rate constant from the given half-life:

In such a way, the integrated first-order law, allows us to compute the final mass of the substance once 10.0 minutes (600 seconds) have passed:

Best regards.
Answer:
See explanation
Explanation:
Electron affinity is the energy released when an extra electron is added to a neutral gaseous atom. A negative value of electron affinity indicates that energy is given out and vice versa.
Metals have positive electron affinity since electrons rarely accept electrons, so;
Na(g)+ 1e^- → Na^-(g) positive
Mg(g)+1e^- → Mg^-(g) positive
For the last case; Br(g)+ 1e^- → Br^-(g), the electron affinity for the non-metals is negative. hence the answer
160.0g
Mass =volume x density = 200.0 mL x 0.8 g/mL= 160.0 g