As,
CuCO₃ ⇆ Cu²⁺ + CO₃²⁻
So,
Kc = [Cu²⁺] [CO₃²⁻] / CuCO₃
Or,
Kc (CuCO₃) = [Cu²⁺] [CO₃²⁻]
Or,
Ksp = [Cu²⁺] [CO₃²⁻]
As,
Ksp = 1.4 × 10⁻¹⁰
So,
1.4 × 10⁻¹⁰ = [x] [x]
Or,
x² = 1.4 × 10⁻¹⁰
Or,
x = 1.18 × 10⁻⁵ mol/L
To cahnge ito g/L,
x = 1.18 × 10⁻⁵ mol/L × 123.526 g/mol
x = 1.45 × 10⁻³ g/L
The answer is 44.0095. We assume you are converting between grams CO2 and mole.
Answer:
1.004×10²²
Explanation:
The molar mass of carbon is 12 g/mol
which means that:
<u>1 mole of carbon atoms has a mass of 12 grams.</u>
Since, diamond is a allotrope of carbon.
Mass of 1.00-carat diamond in grams is:
1.00 carat = 0.200 g
<u>
Since, 1 mole of C contains 6.022×10²³ atoms of C</u>
So,
12 grams contains 6.022×10²³ atoms of C
1 gram contains 6.022×10²³/ 12 atoms of C
0.200 gram contains (6.022×10²³/ 12)×0.200 atoms of C
Thus,
<u>1 carat diamond contains 1.004×10²² atoms of C.</u>
<span>The equation you used is KE=hv-hv0, where h=6.63*10^-34 (constant). You multiply h by 1.5*10^15. Multiply h by the threshold freq of cesium (from part A). Subtract the second answer from the first answer, and you get the kinetic energy. Hope this helps.</span>
Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>