Answer:
0.800 mol
Explanation:
We have the amounts of two reactants, so this is a limiting reactant problem.
We know that we will need a balanced equation with moles of the compounds involved.
Step 1. <em>Gather all the information</em> in one place.
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 4.00 4.00
===============
Step 2. Identify the <em>limiting reactant
</em>
Calculate the <em>moles of CO₂</em> we can obtain from each reactant.
<em>From C₃H₈:</em>
The molar ratio of CO₂: C₃H₈ is 3:1
Moles of CO₂ = 4.00 × 3/1
Moles of CO₂ = 12.0 mol CO₂
<em>From O₂</em>:
The molar ratio of CO₂: O₂ is 3:5.
Moles of CO₂ = 4.00 × ⅗
Moles of CO₂ = 2.40 mol CO₂
O₂ is the limiting reactant because it gives the smaller amount of CO₂.
==============
Step 3. Calculate the <em>moles of C₃H₈ consumed</em>.
The molar ratio of C₃H₈:O₂ is 1:5.
Moles of C₃H₈ = 4.00 × ⅕
Moles of C₃H₈ = 0.800 mol C₃H₈
Answer:
During nuclear fission and fusion matter that seems to disappear but is actually converted into energy. The amount of energy (E) produced in such a reaction can be calculated using Einstein's formula for the equivalence of mass and energy: E = mc^2.
Explanation:
Agriculture, space exploration, and also for medical purposes.
Hope I helped :)
Answer:
The order of reactivity towards electrophilic susbtitution is shown below:
a. anisole > ethylbenzene>benzene>chlorobenzene>nitrobenzene
b. p-cresol>p-xylene>toluene>benzene
c.Phenol>propylbenzene>benzene>benzoic acid
d.p-chloromethylbenzene>p-methylnitrobenzene> 2-chloro-1-methyl-4-nitrobenzene> 1-methyl-2,4-dinitrobenzene
Explanation:
Electron donating groups favor the electrophilic substitution reactions at ortho and para positions of the benzene ring.
For example: -OH, -OCH3, -NH2, Alkyl groups favor electrophilic aromatic substitution in benzene.
The -I (negative inductive effect) groups, electron-withdrawing groups deactivate the benzene ring towards electrophilic aromatic substitution.
Examples: -NO2, -SO3H, halide groups, Carboxylic acid groups, carbonyl gropus.