Answer:
A small positively charged nucleus surrounded by revolving negatively charged electrons in fixed orbits 
 
        
             
        
        
        
<u>Answer:</u> The 
 for the reaction is 51.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical equation for the reaction of carbon and water follows:
 
The intermediate balanced chemical reaction are:
(1) 
    
    ( × 2)
(2) 
    
     ( × 2)
(3) 
    
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[2\times \Delta H_1]+[2\times \Delta H_2]+[1\times (-\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B2%5Ctimes%20%5CDelta%20H_1%5D%2B%5B2%5Ctimes%20%5CDelta%20H_2%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(2\times (-393.7))+(2\times (-285.9))+(1\times -(-1411))]=51.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-393.7%29%29%2B%282%5Ctimes%20%28-285.9%29%29%2B%281%5Ctimes%20-%28-1411%29%29%5D%3D51.8kJ)
Hence, the 
 for the reaction is 51.8 kJ.
 
        
             
        
        
        
When an ionic is placed in water a dissolving reaction occurs so the positive or negative ion are only attracted to each other
        
             
        
        
        
Answer:
1.7 ppm
Explanation:
Original amount N' = 2.6 ppm
time to testing t = 24 hr
final amount N = 2.1 ppm
Using exponential inhibited decay, we have
N = N'e^(-kt) 
Where 
N is the new reading
N' is the original reading
t is the decay time
k is the decay constant
Substituting, we have
2.1 = 2.6 x e^(-k x 24)
2.1 = 2.6 x e^(-24k)
0.808 = e^(-24k)
We take the natural log of both sides of the equation
Ln 0.808 = Ln (e^(-24k)) 
-0.213 = - 24k
K = 0.213/24 = 0.00886
After 48 hrs, the reading of free chlorine will be
N = 2.6 x e^(-0.00886 x 48)
N = 2.6 x e^(-0.425)
N = 2.6 x 0.654
N = 1.7 ppm
 
        
             
        
        
        
If you meant the word silicon then yes, silicon is a semiconductor and its ability to conduct gets better as the temp. rises