Answer:
a) 0.3 m
b) r = 0.45 m
Explanation:
given,
q₁ = 0.44 n C and q₂ = 11.0 n C
assume the distance be r from q₁ where the electric field is zero.
distance of point from q₂ be equal to 1.8 -r
now,
E₁ = E₂



1.8 = 6 r
r = 0.3 m
<h3>b) zero when one charge is negative.</h3>
let us assume q₁ be negative so, distance from q₁ be r
from charge q₂ the distance of the point be 1.8 +r
now,
E₁ = E₂



1.8 =4 r
r = 0.45 m
Answer:

Explanation:
Acceleration can be found by dividing the change in velocity by the time.

where Vf is the final velocity, Vi is the initial velocity, and t is the time.
Since the car came to a complete stop, it's final velocity was 0 meters per second.
The initial velocity was 22 meters per second.
The time was 2.0 seconds.

Substitute the values into the formula.

Subtract in the numerator first.

Divide.

The acceleration of the car was -11 meters per square second. The negative acceleration indicates slowing down/stopping.
(A) 
The energy stored by the system is given by

where
P is the power provided
t is the time elapsed
In this case, we have
P = 60 kW = 60,000 W is the power
t = 7 is the time
Therefore, the energy stored by the system is

(B) 4830 rad/s
The rotational energy of the wheel is given by
(1)
where
is the moment of inertia
is the angular velocity
The moment of inertia of the wheel is

where M is the mass and R the radius of the wheel.
We also know that the energy provided is

So we can rearrange eq.(1) to find the angular velocity:

(C) 
The centripetal acceleration of a point on the edge is given by

where
is the angular velocity
R = 0.12 m is the radius of the wheel
Substituting, we find
